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ABSTRACT

PRDBCEDING PAGE BLANK NOT FILMED

The conventional solutions for increasing the flutter
speeds of particular configurations have included struc-
tural modifications, mass balancing, and geometry changes,
which generally result in increased structural weight and
reduced aerodynamic efficiency. Flutter suppression by ac-
tive control of aeroelastic modes with closed loop feedback
of appropriate parameters is a relatively recent approach
which can significantly reduce these design penalties. This
thesis is concerned with the development of organized synthe-
sis techniques, using concepts of modern control theory, for
the design of active flutter suppression systems for two and
three-dimensional lifting surfaces, utilizing a control mo-
ment gyro (CMG) to generate the required control torques.

Incompressible flow theory is assumed, with the un-
steady aerodynamic forces and moments for arbitrary airfoil
motion obtained by using the convolution integral based on
Wagner's indicial lift function. Wagner's function is ap-
proximated in the analysis by a sum of exponential terms and
two-dimensional strip theory is used to model the finite wing.
This formulation enables Laplace transform techniques to be
applied to the system of equations. Additional states, based
on second and third order time derivatives of bending and
torsional displacements, can be identified and thus allow
the system to be placed into standard state variable form,
with the state transition and control distribution matrices
being real.

Using pole-assignment (arbritrary dynamics) techniques,
the control system characteristics of the two-dimensional
(typical section) wing are first examined to establish basic
design trends with the results presented as a function of
velocity on root locus diagrams. Linear optimal control
theory is applied to find particular optimal sets of gain
values which minimize a quadratic performance function.
The closed loop system's response to impulsive gust distur-
bances and the resulting control power requirements are in-
vestigated, and the system eigenvalues necessary to mini-
mize the maximum value of control power are determined. Full
state feedback with scheduled gains is required to obtain
this minimum value. Reduced feedback designs with constant
gain values, which do not significantly increase power re-
quirements, are also determined.

The vibrational properties of the wing in developing
the three-dimensional analysis are described by a superposi-
tion of the "uncoupled" modes of pure bending and torsion. With
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full state variable feedback, complete modal controllability
(ie., arbitrary relocation of the system eigenvalues) of
the system can be obtained with only a single CMG controller
regardless of the number of assumed modes. The significant
feedback parameters needed to obtain this control are deter-
mined as a function of structural and important CMG para-
meters and velocity. As was learned in the typical section
analysis, the location of all the closed loop eigenvalues
proved critical to particular designs, not only in meeting
power level requirements, but also in influencing the occur-
rence of higher mode instability.

Conditions for system observability are discussed for
both the typical section and three-dimensional wing cases.
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LIST OF SYMBOLS

a distance between typical-section datum and
elastic axis in semichords; positive aft

A matrix of weights on state variables, see
Eq. 4.2

Aij characteristic-equation coefficients de-
fined in Appendix C

b typical-section semichord

B matrix of weights on control variables,
see Eq. 4.2

BI  1 + L

B2  Xa L - a

B3  1 - 2a

B 4 (Gh/(a )2

C controllability matrix

C(k) Theodorsen function

Ch,Ca typical-section spring constants on h,a

Chl,Ch2 ,Cal.,Ca 2 modal spring constants on hl, h2, al, a2

D denominator polynomial in rational approxi-
mation to P(9); D = T2 + dls + do

El flexural rigidity

F open-loop dynamics matrix

Fij elements in open-loop dynamics matrix for
typical-section, see Eq. 3-11

F(k) real component of complex Theodorsen
function
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Fhl,Fh2,
Fal,Fa2, integrated modal weighting factors, see

Fhl,al,Fh2,al, Eq. 5-16

Fhl,a2,Fh2,a2

F(i,j) elements of two mode open-loop dynamics

matrix, see Eq. 6-11

fhlfh2,falfa2 first and second bending and first and

second torsional mode shapes, see Eqs.

5-7 to 5-10

fl to fn coefficients in open-loop characteristic

equation, see Sect. 3.3

GJ torsional rigidity

G(k) imaginary component of complex Theodorsen

function

G control-distribution matrix, see Eq. 3-1

Go  gyro parameter, Hw/IGzwa

Gl gyro parameter, Hw/pb 4 a

G2  gyro parameter, GoG 1

Gol,Go2 gyro parameter, Gofal(YG ), Gofa 2 ( y G )

GlG12 gyro parameter, flal(yG)' Gl2a2(YG)

G2 gyro parameter, G2 /1

g control-distribution vector

gl to gn coefficients of desired characteristic

equation, see Sect. 3.3

H output distribution matrix, see Eq. 3-28

h typical-section plunging degree of freedom,
see Fig. 2.1

h(y) span wise plunging degree of freedom, see

Fig. 5.1
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hl,h 2  typical-section plunging states defined in

'Eqs. 3.3 and 3.4, in Chaps. 3 and 4; first

and second bending mode deflections in
Chap. 5

hllhl2 first bending plunging states defined in

Eqs. 6.1 and 6.2

N_ Hamiltonian, see Sect. 4.1

H ,  CMG rotor angular momentum

Ia  typical-section moment of inertia about
elastic axis

Ial Ia augmented by CMG moment of inertia
about elastic axis

'IGz CMG gimbal moment of inertia

k reduced frequency, ab/U

K feedback control gain vector

K1 to K1 0  feedback control gains

L lift

LD disturbance lift in typical-section equa-
tions of motion

aspan of wing

m typical-section mass per unit span

mG CMG mass

m' m augmented by CMG mass

MD disturbance moment about elastic axis

Mw/G reaction moment of wing on CMG controller

N, numerator polynomial in ra ional approxi-
mation for p(§); Np = n2s + nsT + no
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P dimensionless control power, Tcab/wwg

R matrix of open-loop characteristic equation
coefficients, see Eq. 3.24

ra radius of gyration, (Ia/mb 2 )

ralra2,raG radii of gyration, i + Gz 'al(YGe r
I I Fal

S2
i + Gz fa 2 (YG) ra

fI Fa2 J

IIGz falfa2(YG)] ra

s complex frequency

s s/a in Chaps. II, III, IV; s/oal in
Chaps. V, VI

Sa static unbalance, product of airfoil mass
and CM-EA distance

t time

t tU/b in Chaps. II and V

T kinetic energy

Tc CMG control torque

Tc dimensionless control torque, Tcb/IGzwawg

iUc control vector

U dimensionless speed, U/bwa

UF dimensionless flutter speed

U freestream speed

V potential energy

w local downwash on typical-section
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Wg gust velocity

Wg impulse gust amplitude, feet

x dimensionless chordwise typical-section

coordinate

x state vector

xa dimensionless static unbalance, Sa/mb

Xallx a l2 dimensionless static unbalances,

xa2l x2 2  mG fhlfal(YG) xa ,
Xa21,xa22 1 + Fhla

m fhl fa2 (yG) xa, 1 + m fh2 al(YG) xa

m. Fhl,a2 ma Fh2,al

[1 + mG fh2 fa2(YG) ]xa

my Fh2,a2

y wing spanwise coordinate

YG spanwise distance to CMG

a typical-section pitching degree of freedom

a(y) spanwise pitching degree of freedom

ala 2  typical section pitching states defined in

Eqs. 3.5 and 3.6, used in Chaps. III and

IV; first and second torsion mode deflec-

tions, used in Chap. V

all,al2 first torsion pitching states defined in

Eqs. 6.3 and 6.4

y vector, whose elements are the differences
between the desired and open-loop charac-

teristic equation coefficients, see Eq.

3.25

M mass ratio, m/npb2  2

Pl1,i2, ILG mass ratios, 1 + mG  fhh (YMGG
-xiFhi-
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+ G h2 (YG) , I fhlfh2(YG) .

mQ Fh2 m

12' 13' 64 aerodynamic lag states associated with

rational approximation of p (§)

p freestream density

a CMG gimbal angle

al ,O2  gimbal-angle states defined in Eqs. 3.7
and 3.8

Wagner indicial function

Kussner indicial function

frequency

)F flutter frequency

(h' 'ca typical-section uncoupled frequencies,

h (Ch/m) , (Ca/la)

hl ,.al, modal uncoupled frequencies

Oh2,oa2 (Chl/m) , (Cal/Ia) , (Ch2/m) , (Ca2/Ia)

8(y) dirac delta function

A denominator in elements of two-mode,
open-loop dynamics matrix, see Appendix D

X vector of lagrange multipliers

e observability matrix

X characteristic equation of typical section,
uc = 0

XK characteristic equation of controlled
typical section

f(s) Laplace transform of i(t), s4(s)
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I. INTRODUCTION

1.1 Background

Flutter can be defined as a self-excited, oscillatory
instability of an elastic body in an airstream. Physically,
this instability can occur when energy from the airstream

is absorbed by the body more rapidly than it is dissipated
by damping. The onset of the phenomenon is typically char-
acterized by 'a flutter frequency and a critical airstream

speed. Flight at airspeeds in excess of this critical flut-
ter speed can result in catastrophic structural failure.
The problem of increasing the flutter speed of particular
configurations has in the past been generally solved at the
expense of increased structural weight, through structural

modification and mass balancing, or by reducing aerodynamic
efficiency, through geometry changes. Weight penalties in
the range of 10 to 25,000 pounds, for example, have been
estimated (1,2) to meet flutter requirements in SST class
vehicles.

In more recent years, a substantial amount of experience
has been obtained in developing active control systems for
gust alleviation and the suppression of low frequency, in-
sufficiently damped structural modes of an aircraft. Refs.

3 and 4 are excellent survey papers of the work done in these

areas. This experience, coupled with the potential perfor-

mance payoffs available (1-5), has made the active suppres-
sion of the unstable flutter modes both feasible and desir-

able. Much of the work done in this latter area has occurred
in the last 5 years, and some recent studies can be found in
Refs. 6 through 11. In Ref. 6 a study, including analog sim-
ulation and wind tunnel tests, was done using an unswept,
symmetric wing model to determine the basic characteristics
of an active flutter control system. A simple aeroelastic
model consisting of a cantilever plate with a follower force
at its free end was analyzed both experimentally and theore-
tically in attempting to actively control flutter in Refs. 7
and 8. Analytical analyses of more complicated structural
models applicable to the B-52 and F-4 respectively are des-
cribed in Refs. 9 and 10, and in Ref. 11 a control system
design based on aerodynamic energy is discussed. Each of
these analyses, though detailed in many respects, considered
rather simple sets of feedback parameters in designing their
control systems. This approach, dictated primarily by sensor
capabilities, ignores the possibility of using observors or
estimators in determining unsensed parameters. The analyses
have, therefore, been severely limited in a number of respects:
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(1) the maximum available increase in flutter velocity with
a particular set of controllers can be limited, (2) deter-
mining the gain values that produce this maximum flutter ve-
locity increase can be tedious for complex systems, (3) se-
lecting a control system design giving a particular flutter
velocity increase while optimizing other pertinent design
parameters is difficult, and (4) design procedures cannot be
easily adapted to multi-input/multi-output systems. To re-
move some of these limitations, this thesis incorporates
three goals:

(a) Develop and demonstrate organized synthesis techni-
ques for the design of flutter suppression systems
using concepts of modern control theory

(b) Using a control moment gyro as the primary control
torque generator, indicate and illustrate design
tradeoffs associated with the general development
of a practical flutter suppression system

(c) Establish and identify attractive design features
of the control moment gyro to warrant its consider-
ation as a viable alternative to aerodynamic sur-
faces in producing control forces to suppress flut-
ter modes.

1.2 Control Moment Gyro

Although not usually mentioned when possible methods for
active flutter suppression are considered (4, 12), substantial
experience has been obtained using control moment gyros (CMGs)
for momentum exchange in the attitude control of space vehicles
and satellites (13 - 19). To familiarize the reader with this
type of control, the following is a brief description of the
CMG, including some of the possible advantages to be obtained
by its incorporation in a flutter suppression system.

The CMG consists basically of a rotor (or wheel) with
a known constant magnitude of angular momentum, and a method
by which the rotor can be precessed. As discussed more thor-
oughly in Ref. 18, the three basic configurations for the
CMG are, as shown in Fig. 1-1, the one-degree-of-freedom, the
two-degrees-of-freedom, and the twin gyro. The one- and two-
degrees-of-freedom gyros consist of one rotor mounted so that
it can be precessed about one or two axes respectively. These
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systems, however, can have undesirable cross-coupling torques.
The twin gyro consists of two counter-rotating gyro elements
which are precessed through equal but opposite angles so that
the control torque is always directed about a single axis.
In a three-dimensional flutter analysis, the possibility does
exist that cross-coupling torques occurring for the one degree-
of-freedom gyro could be used to advantage. However, their
inclusion in the flutter analysis introduces nonlinear terms
into the equations of motion. Therefore to maintain linearity
the twin-gyro control system will be used.

For space vehicle and satellite attitude control appli-
cations, the control moment gyro has been shown to have ad-
vantages in power, accuracy, response, and simplicity com-
pared to reaction-wheel systems (16). Since output torque
is proportional to input gimbal rate, the CMG can produce
large moments on the airfoil at the relatively high flutter
frequencies without requirements for large angular momenta,
and hence, large size. The effectiveness is not influenced
by the complex aerodynamic forces which depend upon Mach
number and unsteady aerodynamic effects. Consequently, the
mathematical complexities in the analysis are somewhat reduced.
Furthermore, the inherent lag in the development of forces on
aerodynamic surfaces does not occur with this system,
which should result in a reduction in the amount of lead ne-
cessary for control and higher allowable controller bandwidth.
Also, deflection angle of the' gyro gimbal is an easily meas-
ured quantity and can be used directly as a feedback param-
eter and in estimating other states of the system.

1.3 Thesis Summary

In Chapter II, the equations of motion for the typical
section (two-dimensional wing surface) and CMG controller
are developed. Incompressible flow is assumed and the un-
steady aerodynamics for arbitrary motion are represented by
utilizing the Wagner indicial function. The open-loop char-
acteristics of the system are examined with critical design
parameters identified.

In Chapter III, the closed-loop characteristics of the
system developed in Chapter II are determined. The system is
placed in standard state variable form with the definition of
two new states, and the controllability and observability of
the system are discussed. Full state and reduced state feed-
back designs for various CMG sizes are determined.
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a. One Degree of Freedom

b. Two Degrees of Freedom

c. Twin Gyro

FIG. 1-1 CONTROL-MOMENT GYROS
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In Chapter IV, optimum feedback systems based on a num-
ber of design criteria are determined. System response to
gust inputs is also calculated.

In Chapter V, the equations of motion for a three dimen-
sional, uniform cantilever wing are developed using assumed
mode methods. Optimum orientation and location of the CMG
on the wing are determined. The open loop characteristics
of the system are calculated and comparisons are made with
the two dimensional analysis.

In Chapter VI, the closed loop characteristics of the
system are examined including a discussion of the effects
on controllability and observability of increasing the num-
ber of vibrational modes in the analysis. Critical gains in
full state feedback systems are identified, and a number of
reduced state systems are determined. The problem of higher
mode instabilities induced by the control is analyzed and
methods for reducing the probability of its occurrence are
discussed.

Chapter VII presents a summary of results, conclusions,
and areas of further research.
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II. TYPICAL SECTION WITH CMG:
OPEN LOOP CONTROL CHARACTERISTICS

2.1 Wing-Controller Equations of Motion

The equations of motion of the typical wing section,
illustrated in Fig. 2-1, appear in most aeroelastic refer-
ences including Ref. 20, and will not be derived here. The
equations of motion for the control-moment gyro are derived
in Appendix B and their inclusion in the typical section
equations is relatively straightforward. The resultant equa-
tions can be written

m'h + Chh + Sh' = -LD - L (2-1)

Sah + I a a + Ca a + Hw = I + Ma (2-2)

-Hu + IGz = Tc (2-3)

where the wing structural and geometric parameters, CMG
parameters, and CMG orientation are defined in Fig. 2.1, the
list of symbols, and Appendix B, respectively. The spin and
precession axes of the gyro have been selected so the output
torque generated by the CMG is about the elastic axis of the
typical section. The effect of alternative orientations is
discussed in Chap. V, when the three-dimensional case is con-
sidered. Structural damping contributions are considered
negligible.

Z L,LD

b I X

--ab h
a ELASTIC AXIS

Ma, MD

FIG. 2-1 TYPICAL SECTION GEOMETRY

For transient motion and incompressible flow, the ex-
pressions for aerodynamic lift and moment per unit span are (21)
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L = pb2[h + Ua - baai] (2-4)

+ 2npbU J [~h(~) + Ua(E ) + b( -a)a (E)]4( r - )d

Ma n pb2[bah - Ub( - a)a - b 2 (1/8+ a2)i] (2-5)

+ 2 upb2U( + a) _d [h(-)+Ua(E)+b( -a)&(E), (r--)dE
dt

where t = Ut/b is a dimensionless time measured in semi-

chords traveled after the start of the motion at t = 0. The

superscript dots, however, denote the derivative with respect
to physical time, t. s(E) is the Wagner indicial admittance

function describing the circulatory lift buildup after a

sudden change in incidence, and is discussed in Appendix A.

Substituting Eqs. 3-4 and 2-5 into 2-1 and 2-2, and then

dividing Eq. 2-1 by npb and Eq. 2-2 by npb 4 produce the equa-
tions

+ 1 K + h + (xa - a)a U
T h bb

+-2 r rt +U a +( -a)'al(r - fDdt =-LD.+ 2 dr+ U-
b J -tb b

(2-6)

(xaF - a) + 2 r. + ('/8+ a2)]a + U( - a)a
b b

+ wra - 2 - ( + a)

x + Ua + ( -a)a l(r- T)d + Gloa = MD; (2-7)
b b

-Gowoa + = c . (2-8)
IGz

In order to simplify future operations with these equations,
Eq. 2-6 is multiplied by (Q + a) and added to Eq. 2-7, which
yields
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x, + ( + a) + ( + a) i-

2 1 U 22
+ [xa( + a) + rap + (-a) a + 4 + ra~2aa + Glia& = 0.

Equations 2-6, 2-7a, and 2-8 are then the equations of motion

for the wing-controller system.

2.2 Open-Loop Characteristics of Wing-Controller System

Taking the Laplace transform of the equations of motion,
with the initial conditions and the disturbing force equal
to zero, gives in matrix form

s[ p+1+2 O (S) w [Xab 2)*() ]S2+yo U2 s) o

(xz&+40(+a)+is +w(j+S) [e )+ S) I S a+s)+crs+s1+ra) 0

0 -G 21 (s) T (s)

L Gz

(2-9)

where s(s) is the Laplace transform of the indicial admit-

tance function discussed in Appendix A.

It is of interest to examine the open-loop characteris-
tics of this system with Tc = 0.

For convenience and to nondimensionalize all the param-
eters, the substitutions

S =-

bOa

2 2
(P) 0 .() = 0 2.5 + 0.281 U9 + 0.01365 2

S2 + 0.3455 us + 0.01365 G2

are made into Eq. 2-9, and the characteristic determinant
becomes
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2

+2 2+ -(aW+ r +(1- a) P 9 ;+2 i! G) =

0 2 (2-10)

The characteristic equation is written out in Appendix C and
has the form

s2 {A6 g6+ A 5 s 2+( A41+A42+A43G2)4 + (u2A3 1+A32+A33 G 2 ) 3

+ 4A21 +2A22 + A 23 +(u2A 24+A 25 )G 2 2
5 42423 24 25 33

(2-11)

+ u 2A11+A 12 +(u 2A 13 +A )G 2

+ u2(2A+A2+AG2) = 0
01 02 03 2 '

where the A coefficients2 are defined i Appendix C and are
functions of 4, a, xa, ra, and (Oh/owa) , and G2 is the gyro
parameter equal to the product

GlG o =

npb4 IGz

In order to determine the effect of the CMG on the
dynamic characteristics of a typical section, including flut-
ter velocity, the following values were selected for the non-
dimensional wing parameters (similar to those in Ref. 22)

FL = 10.0
a = -0.4
x = 0.2
r= 0.25

(wh/wa)2  = 0.33 .
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S ubstituting these values into Eq. 2-11 yields

2 24.88.6+15.97 - 5+(0.36U 2+36.67+11.0 G2) 4

+ ui(-1.31 u2+17.84+4.8 G2)s 3

+ [-0.40 u4+2.76u2+8.25+(0.71l2+3.3)G 2] 2

+ u [-0o.085s2+2.8+(0.006u2+l.14)G2 s

+ i2[ -0.009u2+0.113+0.045 G2]

= 0.

(2-12)

Figures 2-2a and 2-2b show a comparison of the root
loci for this system for three values of G2 including G2 = 0,
i.e., without CMG. The root loci are drawn for variations
of the velocity parameter u = U/bwa, which will imply, in
this analysis, variations in U with oa and b held constant.
Roots marked "x" indicate u = 0. From the figures, it can
be seen that for the particular values chosen for the non-
dimensional parameters, the critical roots associated with
the onset of flutter correspond to the torsion branch of the
root locus plot. The frequencies associated with the bending-
torsion modes approach one another as the flutter velocity is
approached for each case, which is a result often occurring
in classical bending-torsion flutter. For increasing values
of U beyond its flutter value, the frequencies corresponding
to the bending and torsion branches of the root locus tend
to converge to the same value. The roots that remain fixed
at the origin for varying u are associated with presence of
the CMG in the system.

For increasing values of G2, corresponding increases in
flutter velocity and flutter frequency occur. This can be
seen more explicitly in Fig. 2.3 which shows that increasing
G2 from 0.0 to 5.0 results in increases for uF from 1.65 to
3.35 and for wF/wa from 0.80 to 1.11. In general, increases
in the value of G2 would correspond to increasing the size of
the CMG. However, for a constant value of angular momentum,
increasing G2 could correspond to a decreasing value of IGz
with fixed angular momentum, which would be associated with
a decreasing CMG size.
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Imaginary

s-Plane
1.0 u =0.0

1.0

* .75
2.3 1.75 .

. ' • 1.6 2.7

1.0 .5

.... No CMG

1.75 3.0 3.0 -- CMG, G2 
= .221

Real

.2
-. 8 -. 6 -,4 -. 2 .2

FIG. 2-2a ROOT LOCUS COMPARISON OF WING WITH AND WITHOUT CMG,

G2 = 0.221

.O Imaginary

u 0

.75 s-Plane

S. 1.0
2.5.

-1* No CMG
---- CMG, G2 = 2.12

2.1 3.0 3.0

-.8 -.6 -.4 -.2 .2

FIG. 272b ROOT LOCUS COMPARISON OF WING WITH AND WITHOUT CMG,
G2 = 2.12
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UF

w
F -4.0

-1.5 - 3.0

-1.0 2. ,

- , Flutter Velocity

-.5 -1.0 w
S, Frequency at Flutter

o I I I I I
0.0 1.0 2.0 3.0 4.0 5.0

H
2

w
G2 -b4 2 Gyro Parameter

itpb I w
Gz a

FIG. 2-3 VARIATION IN VELOCITY AND FREQUENCY AT FLUTTER
WITH G2

-12-



In the next chapter, the effect of feedback on this sys-

tem will be examined.
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III. FEEDBACK CONTROL OF TWO DIMENSIONAL
WING-CONTROLLER SYSTEM

3.1 State Variable Formulation

The characteristic equation developed in the previous
section is 8th degree, where the two roots located at the
origin in Figs. 2-2a and 2-2b are associated with the pres-

ence of the CMG in the system. If feedback of the gimbal
angle a were not required, the degree of the characteristic
equation could be reduced to seven. However, passive or
active feedback of gimbal angle is necessary to maintain the
validity of the small-gimbal-angle assumption in the equa-
tions of motion. Thus, the minimum number of states to de-
fine this system is eight. It would be advantageous for
sensor and estimator design requirements if it were not nec-
essary to obtain information on all states to adequately
suppress the onset of flutter for reasonable increases in
the velocity. To obtain some insight into which parameters
are most significant in the control law, an analysis using
arbitrary dynamics is done in this section. In this method,
the eigenvalues of the uncontrolled system are shifted to
arbitrary new locations using state variable feedback. This
requires that the system be modally controllable with the
particular set of states chosen to define the system. To
determine the controllability of the system, the equations
of motion (Eqs. 2-6, 2-7a, 2-8) are first put into standard
state-variable matrix form, which can be written in general,
with no disturbing forces

x = Fx + Gc (3-1)

where x is the state vector and gW the control vector. With
,(§)= N./D., the first equation in Eqs. 2-9 is multiplied
by D,, and then the inverse Laplace transformation of Eqs.
2.9 is taken assuming zero initial conditions. The result-
ing equations can be written

B + (Bldl + 1)h (Bld2 + 2u 2 n I + B )
lb 1 4)b

+ [2nou3 + B4dlu] - + B4 d 2U + B2 I8 + u(B 2 dl+ B3 n 2+ 1)
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+ 2 (B2 do + d 1 + B3 n 1 + 1)a

+ 3 [d o + B3n o + 2nl]a + 2noi4 a = 0 ; (3-2a)

B2 + BI( + a)] .+ B4 ( + a) + [B 2 ( + a)+ 2 - i+ a2

+ ia 2 + r2a + Gla = 0; (3-2b)

-Go& + c = (3-2c)

Gz a

Equations 3-2 are equivalent to Eqs. 2-6, 2-7a, and 2-8 in-

sofar as they have the same characteristic equation. For

certain nonzero initial conditions, the dynamic response of

the two systems would be different.

Before writing Eqs. 3-2 in standard form, a decision
must be made as to which quantities are considered states.

There are many possible realizations of the system of equa-
tions, and the procedure here will be to select those states
which would be the least complicated to individually sense,
and can be explicitly identified. The following quantities
are therefore selected as the states of the system:

hl= h (3-3)

h2= 1  (3-4)

a1 = a (3-5)

a2 = al (3-6)

a1 = a (3-7)

q2 = 0l (3-8)
h2

E = (B1 h2-+ B2c 2 ) (3-9)

2 =  + (Bid,+ l)-_ 2 + u(B 2 d1 + 1 + B3 n 2 )& 2 . (3-10)
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Substituting Eqs. 3-3 to 3-10 into Eqs. 3-2 and writing in
matrix form yields Eq. 3-11, where the Fij are defined in
Appendix C:

£hI/b 0 1 0 0 0 0 0 0

S 2 B 4(i+a) B2 2 2- B2G [B2(i+a)+r4++ 2 ]
- 0 +- 0

'2/b A O 6 A A Aa

Et1 0 0 0 1 0 0 0 0

S B1 4 ( 
J+a) 81 2 - 810  [(2+B1 (+a

) ]

A 06 Ag A6

l 0 0 0 0 0 1 0 0

2 0 0 0 G° 0 0 0 0
2 o

i 71 0 773 F4 0 F76. F77

2 F a F82 F F 0 F as F87 0
2 81 82 F83 84 6 87 0

ri 1

h1 /b 0

h2 /b 0 (3-11)

a o
X2  0 T

x + - C

0 1 0 Gz a

02 1

t2 0

3.2 System Controllability

A necessary and sufficient condition for arbitrary re-
location of the system eigenvalues by state-variable feed-
back (i.e., modal controllability) is that the so-called con-
trollability matrix be nonsingular. The controllability ma-
trix is defined to be,

C = G i FG ** Fn -1G . (3-12)
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where n is the number of states defining the system. It can
be shown that this matrix is nonsingular for the parameters
selected in this analysis with Gl, Go > 0 , U > 0.

Thus, using only one CMG-controller and full state feed-
back, the flutter velocity can theoretically be increased to
any value by just making all the real parts of the system
eigenvalues have negative values. This generally, is not
only true for systems utilizing a CMG controller, but also
can be shown to be the case if a single aerodynamic surface
were to be used. This is contrary to implications given in
Ref. 11, in which Nissim states that the typical section
system "has two degrees of freedom, translation (bending)
and rotation (torsion). Therefore, two control surfaces are
required in order to maintain precise control of the two de-
grees of freedom of the main surface." However, implicit in
that requirement, although it is not entirely clear what is
meant by precise, is that the number of feedback parameters
is limited to only four quantities, a, d, h, and h.

3.3 Full-State Feedback Gain Determination

Another method for determining if the system is modally
controllable is to actually solve for the feedback gains in
the control law, which relocate the eigenvalues to selected
locations. Obviously, if the gains can be determined, the
system is modally controllable. Two methods will be given
for the determination of the required feedback gains. The
first is rather straightforward and can be generally more
convenient to use on low order systems, since the evalua-
tion of the controllability matrix is not required, and ac-
tually the system equations need not be arranged in state
variable form. The second method is mathematically more in-
volved, but provides a generalized format for more conve-
niently calculating the gains in a large order system. The
description of this method is based on the procedure out-
lined in Ref. 25. The control law will be assumed to be of
the general form

T b h
= K -+ K -+ K a + Ka2 lb 2b 3 1 4 2

IGzla

-K 5al - Kg2 + K751 + Kgi2 (3-13)
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or in vector notation

T T

Gz a h2
aI

a 2
al

a 2

e1
52

(3-14)

The basic problem of selecting gains to arbitrarily
place the system eigenvalues can be stated as follows:

Given the single-input system

x = Fx + guc (3-15)

(where for application to Eq. 3-11, u c is a scalar and & is
a vector) with the characteristic polynomial for uc = 0,

X(s) = det (sI-F) = s n +f 1 sn-1+ ..... fn, (3-16)

find the gain vector K such that the characteristic polyno-
mial of the system

= (F - gKT)x (3-17)

has the specified form

XK(s) = sn + g1 sn-l ........ gn . (3-18)

Whenever the system contains a small number of states,
a solution for the gains can sometimes be generated more
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conveniently by directly expanding the characteristic deter-
minant of Eq. 3-16 and equating the coefficients of like
powers of s with those of the desired characteristic equa-
tion, Eq. 3-18. For example, for the particular system des-
cribed in Eq. 3-11, a solution can be developed by substituting
the Laplace transform of Eq. 3-13 into the transform of Eq.
3-2 which results in the following characteristic determi-
nant:

1 i4 + r(B d +l)3 + B do+2n )2+B4 2  B2 4 + (B2d l++B3n2 3  O

+ (23no +B4d 1 ) + B4 do
2  

+ (B2do+d +B3n +1)2 2

+(do+B3n+2n )B3 + 2n U4

2r 2 =)
2  2 K

[B2 + + a)] 2 + B4(j + a) 82(4-a)+r -+ a 2 + s + rXK
2 1Ba, 2)+rCr±a G K'

-K8 1 3B + [ -K 7 B K L(B dl +I)212 -K 8 B2 3 + -K7 B2-K 2 (B dl

- - 1+B1]n,2l a s 4 K 5

- (K 4+o) - K3 '  (3-19)

Expanding this determinant and equating coefficients estab-
lishes eight equations, which can be solved simultaneously
for the eight gains to arbitrarily relocate the eigenvalues
of the system.

For large order systems the above approach could be
tedious, and a procedure more amenable to computerized solu-
tion is needed. The following method is presented from Ref.
25. From Eq. 3-17

XK(s) = det (sI - F + KT )

= det (sI - F)(I + (sI - F)-1 g IT)

= det (sI - F)'det (I + (sI - F)-l KT)

= X(s)' (1 + KT(sI - F)-1 K) (3-20)
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Hence,

YK(s) - X(s) = X(s) * KT(sI - F) - 1

= Yl sn-1 + ...... Yn-l s + Yn (3-21)

where

1 s  n - 1 + ...... Yn- 1S + Y
KT (sI - F) = n-sn + fls ...... n

Now, as can be directly verified,

(s F)- 1 n - + (F + fll)sn-2 + (F 2 + fl F + f21)s n - 3

+ .... + (-1 + flFn- 2 + ... _fn-1)

(3-22)

Substituting Eq. 3-22 into Eq. 3-21 and equating coefficients

of like powers of s gives the following system of equations:

Y = KT g

Y2 = KTF + fKT g

Y3 = KTF 2 + flKTF + f 2KT&

Yn = KTFn-lg + flKTFn-2 &+ ..... fn-1& (323)

This can be written in matrix form as
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T T

fl KTF& gTFT

Y= f2  fl 1 =R K

2 • .

fn-1 ..... f2 fl I KTFn-1 TFT(n-)

= RCTK (3-24)

where C is the controllability matrix, and Y is the vector
whose elements are the differences in the coefficients of
the characteristic polynomials defined in equations 3-16
and 3-18, i.e.,

f 1

g2 f2

gn -fn (3-25)

Thus, the gain vector can now be obtained from Eq. 3-24:

K = C-TR- Y (3-26)

This will have a 'solution, since R is clearly non-singu-
lar and, for the controllable system that is considered here,
C is non-singular.
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3.4 Design by Arbitrary Dynamics (Pole Placement)

An extensive parametric study was done, utilizing equa-
tions obtained from Eq. 3-19, in order to determine some of the

characteristics of the wing-controller system. Variations in

U, G2, and root locations were considered. Although later de-

sign specifications may dictate additional requirements on the

root locations, the one stability criterion established for

arbitrary root placement was that the minimum negative value of

the real part of any root would be greater than 0.05%a when U

is greater than its critical value for the wing without the

CMG (i.e., _ > 1.65). Consequently, two particular situations

arose in the analysis, depending on the values of G2 and i:

(1) one conjugate pair of roots had positive real parts or did

not meet the stability criterion, and thus, to maintain an

adequate stability level, these roots plus the two roots at

the origin (Fig. 2-2) had to be relocated by proper selection

of the control gains; (2) all roots except those at the origin

met the stability criterion, with no positive real roots. The

roots that are relocated in order to meet the stability crit-

erion will be referred to as the critical roots. When judging

the merits of various root locations for particular values of

G2 and u, the relative size of each set of control gains was
the basis of comparison, with smaller gains implying a more
desireable design. Though not a direct indication of the qual-
ity of a particular design, the size of the gains do provide
a measure of the relative minimum values of the torque and

power requirements among designs constrained to the same stab-
ility criterion. This is verified by the results of Chap. 4.
Low gain values also facilitate the determination of adequate
reduced feedback systems, since elimination of certain feed-
backs as unnecessary can be made when their values are negli-
gible. The following results and conclusions were obtained
from the parametric analysis

a. The lowest gain values are obtained when only the crit-
ical roots are relocated and are placed as near to the
imaginary axis as allowed by the stability criterion.

b. When relocating only the roots at the origin, the
values of the gains are reduced by placing the roots
on the real axis.

c. When there are four critical roots, the gain values
can be reduced (1) by proper adjustment of the imag-
inary part of roots originally located at the origin,
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and (2) by relocating the torsion-branch roots at
approximately the same distance from the origin as
they were with no control.

d. Gain scheduling, in which the gains are made a
function of freestream velocity, can be used to
reduce the gain values over a range of veloc-
ities. Depending on the value of G2, all the gains
need not be scheduled, but even with reduced sched-
uling, the added complexity may be prohibitive for
a particular design. The following three examples
illustrate the effects of gain scheduling. Since
the wing is stable without the CMG for U < 1.65,
only the feedback characteristics for U > 1.65 were
considered of interest.

Table 3-1 shows, as a function of velocity and for
three values of G2, the gains needed to place the
eigenvalues of the system at the desired new loca-
tions as shown in Figs. 3-1, 3-2, and 3-3. The
root locations were chosen to produce minimum gain
values using the guidelines indicated above in a,
b, and c. In the characteristic equation, all the

gains except K5 and K6 appear multiplied by the
gyro term, G1 . Thus in Table 3-1, Ri 

= GlKi is
used as a convenient parameter to describe the
feedback characteristics, since, for a given G2
and set of root locations, Ki will remain constant
for variations in Gl and Go . Figures 3-1 to 3-3
show three different control situations:

(1) G2 = 0.221: There are four critical roots
for all i.

(2) G2 = 3.8: For each U except U = 3.0, only
two critical roots exist.

(3) G2 = 2.12: For U52.4 there are two critical
roots, and for U > 2.4 there are four critical
roots.

For G2 = 3.8, the gains remain relatively constant
over the range of velocities considered except at
U = 3.0. This indicates that a set of constant
gains could be selected which would place the roots
in approximately the same locations. For G2 = 0.221,
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Table 3-1

SCHEDULED GAINS FOR FLUTTER SUPPRESSION TO U = 3.0

Ki = GlK i

S K K2 K3 K4 K5 K6  K7 K8

(1) G2 = 0.221

1.75 .043 .070 -.110 -.060 .148 .207 -.021 -.002

2.0 .062 .118 -.203 -.105 .231 .340 -.030 -.016

2.3 .082 .166 -.195 -.000 .291 .456 -.036 -.018

2.5 .098 .198 -.140 - 0.0 .317 .522 -.039 -.020

2.7 .115 .236 -.086 .05 .332 .582 -.061 -.021

3.0 .127 .317 -.070 .06 .300 .665 -.042 -.022

(2) G2 = 2.12

1.9 .014 .025 .231 .032 .005 .10 0.0 .006
2.1 .014 .024 .235 .035 .006 .10 0.0 .005
2.3 .015 .023 .241 .040 .006 .10 0.0 .005
2.5 .015 .020 .035 -.265 .024 .2175 -.0164 -.0201
2.7 .091 .163 .056 -.300 .071 .339 -.024 -.022
3.0 .145 .315 .109 -.360 .105 .490 -.026 -.026

(3) G2 = 3.80

1.9 .026 .045 .415 .058 .008 .10 0.0 .011
2,1 .026 .042 .422 .063 .008 .10 0.0 .010
2.3 .027 .041 .431 .071 .009 .10 0.0 .009
2.5 .029 .042 .445 .082 .010 .10 0.0 .009
2.7 .033 .046 .464 .098 .012 .10 0.0 .009
3.0 .010 .013 .257 -.285 .016 .197 -.011 -.0155
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each of the gains varies somewhat, with only feed-
backs of h and having a significant variation
with velocity. For G2 = 2.12, each gain does show
significant variation with velocity, caused pri-
marily by the change from two to four critical
roots as the value of U increases beyond 2.4.

Figures 3-4, 3-5, and 3-6 show a comparison of the
root loci for G2 = 0.221, 2.12, and 3.8 respectively,
using constant gains and gain scheduling. Figure
3-6 shows that constant gains can be used with very
little change in the root locus. Figure 3-4, G2 =
0.221, shows that there is very little change in
the noncritical roots using constant gains. The
critical roots become located on either side of
their scheduled value, For G2 = 2.12, Fig. 3-5
shows what differences may result when using con-
stant gains. The roots corresponding to the torsion
branch of the root locus with constant gains follow
the bending branch associated with scheduled gains,
and the bending branch of the root locus with con-
stant gains results in the critical flutter condi-
tion.

Thus, it appears that to obtain the best results
using constant gains, the value of G2 should be
selected to give an open-loop flutter velocity
greater than the maximum flutter velocity desired
for a particular application.

e. Relaxing the stability criterion, such that the
critical roots can be placed nearer the imaginary
axis, can result in reduced values for the gains.
The size of the gains, however, may not provide an
accurate measure of the relative values of the torque
and power among designs constrained to different
stability criterion.

f. Although feedback of eight states is necessary to
place exactly the set of roots at a desired loca-
tion for particular values of velocity and G2,
adequate stability can be achieved with reduced-
feedback systems. A number of possible designs
using various combinations of the feedback param-
eters can be developed, depending on the values of

-26-



Imaginary
s-Plane.

u = 1.75 -1.0

2.0 1.75 .0

1.75 *.. Constant Gains

2.3 2.0 1.75 --- Gain Scheduling

3.0 G2 = 0.221

1.75 3.0 3.0

I I IL I I Real

-.8 -.6 -.4 -.2 1.75 .2

FIG. 3-4 ROOT LOCUS COMPARISON BETWEEN CONSTANTAND SCHEDULED GAINS

Imaginary1.9 u
u =1.9

2.3*
2.5 ) 1.0

3.0

1.9

6I I - I I Real

-.8 -.6 -.4 -.2 .2

FIG. 3-5 ROOT LOCUS COMPARISON BETWEEN CONSTANT AND SCHEDULED GAINS

u=1.9
Imaginary

2.3

2.5 3.0

3.0 1.0

3.0 2.5

G = 3.81.9 2

.5

Real

-.8 -.6 -.4 -.2 .2

FIG. 3-6 ROOT LOCUS COMPARISON BETWEEN CONSTANT AND SCHEDULED GAINS

-27-



u, G2 and the eigenvalues of the system. One ex-
ample of a reduced-feedback system can be obtained
from Table 3-1 for G2 = 3.8. The significant gains
correspond to feedback of a and 6, and a design
using only these two feedbacks, along with a to null
the gyro, results in a root locus very similar to
the eigenvalues shown in Fig. 3-6.

The simplest feedback system for any value of G2
can be determined by examining the characteristic
determinant, Eq. 3-19. It can be seen that feed-
back of &(K4) has the same influence on the roots
in the characteristic equation as Go . Consequently,
increasing the value of the gain parameter K4 is
equivalent to increasing G2. Figure 3-7 shows
the root locus for a system using only two feed-
backs characterized by the gains

(K4 + G2 ) = 3.8

K 5 = 0.10

For G2 = 3.8, this system reduces to one requiring
the feedback of only a.

A comparison of the response characteristics of this
system with systems using all eight states as feed-
backs will be done in Chap. 4.

3.5 System Observability

In the preceding analysis, total knowledge of all the
necessary states for use in the control laws was assumed.
This information could be obtained through sensor measure-
ments or through a properly designed estimator if it were
not possible or convenient to measure directly the desired
states. The sensor problem would be reduced to a minimum if
all the states could be estimated from one measurement, the
most convenient of which would be a. If the state of a sys-
tem at any time can be uniquely determined by the available
measurements, the system is considered observable. The ob-
servability of the wing-controller system, assuming only a
is measured, can be qualitatively determined by examining
Eqs. 3-2. Mathematically, observability can be determined
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by the requirement that the observability matrix be non-
singular. The observability matrix is defined to be

H

HF

HF n - 1 (3-27)

where H is the output matrix defined from

y = Hx (3-28)

and y is the measured quantity. With only a measured,

H = 0 0 0 0 1 0 0 0]. (3-29)

It can be shown that the observability matrix is non-
singular for the parameters selected in this analysis for
Go, GI > 0, U 0.

Thus, it appears a may be the only quantity necessary
to measure, since stability can be achieved with only a feed-
back. If more control of the eigenvalue locations is desired,
the other states can be estimated from this measurement.
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IV. SYSTEM DESIGN USING OPTIMAL
CONTROL

4.1 Optimal Control Using Quadratic Synthesis

In Section 3.4, the relative values of the gains in

the control law were used as a basis for comparing various

eigenvalue locations. A criterion more directly associated

with system performance, which results in stable, linear

feedback control, can be obtained by minimizing a cost

function made up of integral quadratic forms in the state

and control. Determining the control requirements in this

case is basically similar to the optimal regulator problem

as discussed in Ref. 26. The following is a brief descrip-

tion of this method.

As has been shown previously, the equations of motion

can be written.in the form

x = Fx + Gu (4-1)

It is desired to minimize a cost function of the form

J 1_ I (xTAx + ucTBuc)dt (4-2)
20

where superscript T indicates the matrix transpose, and A

and B are symmetric weighting matrices selected to obtain

"acceptable" levels of x and c. The control uc which

minimizes J can be obtained by solving Eq. 4-1 simultan-

eously with the Euler-Lagrange equations

iT
C x (4-3)

Uc (4-4)

where

) = xTAx + ucTBc + AT (F + Gc)

and X is a vector of Lagrange multipliers.
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Substituting for t in Eqs. 4-3 and 4-4 yields

S= - Ax - FTA (4-5)

U - B-lGTo (4-6)

Substituting Eq. 4-6 into 4-1 and combining with Eq. 4-5 gives

[ F -GB-1GT x= _ -F r  (4-7)

-A -FT

One method of solving Eq. 4-7 is by using the substitution
A = Sx, where S is a matrix. This results for the regula-
tor problem in determining the steady-state solution of a
matrix Riccati equation for S of the form,

SF + FTS - STGB-lGTS + A = 0 (4-8)

The feedback gain matrix, K, in the control law uc = -Kx
is then obtained from

K = B-lGTS. (4-9)

Another method of solution is by eigenvalue decomposition as
described in Ref. 27.

Obviously, critical to any solution of this problem is
the choice of weighting matrices. One "rule of thumb" in
selecting A and B is to choose diagonal matrices whose
elements are equal to

1 and 1

(ximax)2 , (ucmax) 2

respectively, where ximax and ucmax are the maximum
"acceptable" values of xi, the elements of state vector,
and uc respectively. It must be remembered, of course,
that the weighting matrices are only relative, and the actual
maximum values and their relative sizes occurring in practice
will depend on the system response to initial conditions and
disturbances.
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As a first step in this introductory analysis, the
diagonal elements of A are considered to be very small

with respect to B, so that no restrictions are placed on

the state behavior other than stability and therefore the

design that essentially minimizes U dt is being
determined. The matrix A can be positive semi-definite

to the extent that it cannot be identically zero, since, as

can be seen from Eq. 4-2, the solution degenerates to the

case, uc = 0.

Table 4-1 shows the feedback gains for G2 = 0.221 as a
function of velocity, resulting from a solution of the

optimal control problem.

A root locus of the critical roots is shown in Fig. 4-1.

The noncritical roots, as might have been expected, are left

unchanged in the controlled case, and are not shown in the

figure.

TABLE 4-1

GAINS FROM OPTIMAL CONTROL
ANALYSIS G2 = 0.221

Ki = GlKi

Kl K2  K3  K4  K5 K6 K7  K8

1.75 -.005 -.010 -.028 -.039 .001 .057 -.003 -.006
2.3 -.166 -.026 -1.26 -1.22 .001 .555 -.038 -.168

2.5 -.202 .052 -1.56 -1.45 .001 .687 -.037 -.182

2.7 -.232 .136 -1.81 -1.63 .001 .807 -.037 -.187

3.0 -.272 .260 -2.13 -1.84 .001 .971 -.039 -.186

For a particular value of u, it can be seen that if

the system instability is due to eigenvalues equal to R + jI,
then to minimize J, the roots in the controlled case should
be placed at -R + jI. Thus, as the value of u increases,
the real root of the critical eigenvalue should be placed
increasingly farther into the left-half plane. Similar re-
sults occur also for larger values of G2 and can be re-
peated on a simpler level by looking at a simple second
order system with negative damping. For example, consider
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x 2Rx +x = UC.

For y, = 0, the eigenvalues are

s =R + jI

with

I = , 0- R 2

To minimize

J = (xTAx + bu)dt

with the diagonal elements of A small,

u a -4Rx.

The resulting eigenvalues are

s = -R + jI.

Since six of the eight roots remain essentially unchanged

in the higher-order system when going from the uncontrolled

to the controlled case, this system takes on characteristics

similar to those of a simple harmonic system.

The large gain values appearing in Table 4-1 as com-
pared to those in Table 3-1 are in part due to the tighter

control requirements resulting from moving the pair of

critical roots farther into the left-half plane. Primarily,

however, the large values are due to the relocation of the

roots originally at the origin. It was found in Section 3.4

that proper placement of these roots can result in lower

gains (and for the particular value of G2 used in this

analysis, large gains result for placement of these roots

near the real axis). Thus, whether gain values can be used

to indicate a desirable design as was done in Section 3.4

depends on what particular function is being optimized.

Because of the placement of the critical roots in

achieving the minimum integrated value of control torque,
the initial values of torque tend to be large. This feature

of the design can be partially alleviated by redesigning the
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control for larger values of G2. In fact, for practical
design considerations, the maximum values of torque and
power may be more critical parameters than the time inte-
gral of control torque. The effects on these parameters
and other response characteristics resulting from variations
in u, G2 , and root locations are investigated in Section
4.2.

4.2 System Response to Gust Impulse

The aerodynamic lift and moment produced by gust-like
disturbances in the airstream are a major source of external
loads on a lifting surface. The lift and moment distur-
bances created by an impulsive upward gust striking the
leading edge at time t = 0 can be described by (20)

LD = 2npbU2  d - t)d (4-10)

0 d U - t)dE (4-10)

MD = 2rpb2 ( + a)U 2  d [(t)] (r - t)dt (4-11)

where Wg = wg8(t) is the impulsive gust velocity, and 4,()
is the Kussner indicial function for a sharp-edged gust.
Substituting for LD and MD. in Eqs. 2-6 and 2-7 results in

S+ i]1 + CO2 h + (xa/ - a)a + a

+ 2 U d + [ . +( - a)&]4(r-t)d
b dt b b

U2  
d  (t) 4( - t)dt ; (4-12)

22 dIi+

(xap - a) h 1/8+ a2 ] U ( - a)& +L 2 ra2

2 - ( + a) I [ + Ka + ( -a)a] ( T - t)dE

+ Gl a
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2 (+ a) r (t) #( r - t)dt ; (4-13)

-GooJa& + o = Tc (4-14)
IGz

As before, adding the product of Eq. 4-13 and (1+a) times
Eq. 4-12, rearranging terms, and taking the Laplace trans-
form gives

[( + 1) 2 + 2uh(s)) + 2

+ (xap - a)g2 + [ + (1-2a)(s) s + 2p(s)2

2W(s)
-2u U 4(s); (4-15)

S + Q + a) + ]s 2 + p ( + a)

+{ [x4 (1+a) + ra2 p + (h-a)] g2 + us + r2,a( )

+ Gla(§) = 0; (4-16)

-G oa(§) + g2a(s) = Tc(s) (4-17)
IGz a 2

Multiplying Eq. 4-15 by D, and substituting the general
control law, Eq. 3-13 gives in matrix form
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r, (~n + (n 9 n z2 R Z 4 ( d +1 B n o 3  
0 1

U o 1 -11 'I' 4'- - 2 -21 3 2'

3 4 .2-2
+ (25 n + B4 d l) + B4don + (B 2 do +d+B3nl+)u

-3

+ (do+B 3 no+2n l )u s+2no U

[B 2  1 + B 1j +a 2 + B4( + a) (B2(+a)+r + 2+ G

-K* B +[-K. B1 -K a (Bld +1) ] 2  K B 2
3 

+ [-K B2-K g(B 2 dl
+
1 92+K 6 s+K 5

-K2 - K1  + B3 n 2 ) 2 -(K 4 +Go)S-K 3

2 U2s2 D ( -

x a(s)l = o
x ( 9) o

(4-18)

The Laplace transforms of the solutions for a(t), h(t), and

o(t) are

a(s) = 2u (s)Dp B2 + Bl( + a) + Kg8 Bl 4

+{K 7Bl + K8 (Bldl + 1)u

+ K6 B2 + Bl( + a) )3

+i B4 (+ a) + K5 [B 2 + 1 (Q + a)] + K2 s2

+K( + a) + K + K5B4 (- + a) ; (4-19)

-38-



(s) = - 1 g D#(s) -K 8A6 s5 - [K7A6+(A5D+dlA 6+n2A5N)K8] 4

+ flB2+Bl+a)] (rKG 2)+Kg [B2B4 (Q+a)u2(Bldl+1)-raLB1
2 1 -3

-R2 B2(+a)+r+L8+a2 -uKB1 s

+ IB2+BI(,,+a) K3 +  B2B ( +a)-r2B 7

1 2 2 4+ 2 "

- K2 u-K1 B2 (Q+a)+ra 2 +a a

+ uK8 8 -2(Bl 2+ uK8 B4(Q+a)(B2dl+l+B 3n2 )-r2 (Bldl+)s2

+ (B4 (Ja)(K 4 +G2 )-uK -raK2 Is

+ iB4( +a) 3-r2l .); (4-20)

h( = -2i2 W[(B) D () B2(+a)+r2/++a 2+8B 4

b XK U

+K 6 [ B2(f+a)+r2 L +p +a2] +u

+ K7B2+K8u(B2dl+1+B3 n2) 2

+r r2/+K 6 +K5 [B2 ( Q+a)r2 -++a2 +(R4+G2 )

+ 2K6r2+K§u +K3 s+K5 r2); (4-21)

whereXK denotes the characteristic equation. 3, like 4 (t),

is a transcendental function and must be approximated so that

0(9) can be determined and Eqs. 4-19, 4-20, and 4-21 can be

inverted. The most familiar form is

=() = 1 - 0.5e - . 1 3t - 0.50e - t (4-22)

Its Laplace transform is

(s) = 0.565us + 0.13d 2  (4-23)

(9+0.13u) (+)

The torque required for control, Tc is determined from

inverting Eq. 4-17, and the power used by the gyro torquer is

-39-



simply the product of control torque times gimbal rate, a.

Figures 4-2 and 4-3 show the control torque and power res-

ponse to an impulsive gust striking the leading edge. Two

convenient non-dimensional parameters are presented, Tc and

P (see List of Symbols). For three values of G2 , 0.221,
2.12, and 3.8, the feedback gains used in this analysis

correspond to the values in Table 3-1 for u = 2.5, and the

value of G 1 is assumed constant at 3.5.

As can be seen from the figures, the maximum values of

the torque and power parameters tend to decrease with in-

creasing G2 . The control torque and power are damped much

faster for G 2 = 3.8, where the real root associated with

the torsion branch of the root locus is farther in the

left-half plane (Fig. 3-3).

The response of the gyro gimbal angle to a gust impulse
is illustrated in Fig. 4-4. For the same set of roots, the

maximum values of a for each value of G2 are approximately

the same. These maximum values, which equal approximately

0.2 for the three cases considered, indicate the possibility

(for large .values of w /b corresponding to large gusts or

small wing chords) thag the small-angle approximation intro-

duced in Appendix B to linearize the equations may become

invalid. For example, GL = 3.5, G2 = 2.12, w /b = 3.0 re-

sults in
ama x = 33 deg.

To obtain the effect of varying G2 on maximum power re-

quirements, a parametric optimization study was done in which

the root locations corresponding to the smallest absolute

value of maximum power for varying values of G2 and U were

calculated. For each G 2 and u the minimum power values occur-

red for approximately those root locations associated with

minimum gain values. The results are shown in Fig. 4-5.
Small values of G? correspond to situation (1) as discussed in

Section 3.4 in which four critical roots exist. The large

values of control torque are needed not only to null the gyro

gimbal, but to provide energy to increase the flutter velocity
of the system. For large values of G2, there are only two
critical roots associated with the gyro gimbal angle. The min-
imum value of the power parameter, P, for a particular u occurs

,at the transition between two and four critical roots. This
mini um corresponds to the actual minimum power required if

IGz a remains constant as G2 is varied.

To obtain an actual estimate of power required, the
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following set of values was selected, compatible with the

chosen values of G1 and G2:

TABLE 4-2

G2  = 3.8

H = 6.0 kg-m2
w sec

IGz = 0.09 kg-m2

wa = 10 Hz

b = 1.5 ft.

The corresponding maximum value of power is 0.007 HP.

Also shown in Fig. 4-5 are the values of power associated
with two of the reduced feedback cases discussed in Sec. 3-4,
and identified on the figure. These values indicate that by pro-

per selection of the root locations a reduction in feedback
complexity can be made without a significant increase in power

requirements (illustrated by 0). However, since the system ei-

genvalues cannot be arbitrarily determined with reduced feed-

back systems, the noncritical root locations and the stability
level of the controlled system may be sufficiently altered

to produce increased power requirements. The maximum gimbal
angles corresponding to the root locations used to determine

Fig. 4-5 are shown in Fig. 4-6. The minimum values of a for
each u occur at the value of G2 corresponding to the minimum
value of P in Fig. 4-5. These two curves indicate that selecting
a value of G2 corresponding to a value of uF equal to the maxi-

mum desired flutter velocity results in the "best" design, with
regard to minimizing values of power, while keeping variations
of a to a minimum. This, of course, would be subject to size

constraints on the CMG itself. The large values of o/(wg/b)
may be prohibitive for any practical design. These values can

be reduced by relocating the critical and noncritical roots of
the system with corresponding increases in power requirements.
From Eq. 4-20, it can be seen that increases in GI, holding G2
constant, can also result in a decrease in a. These would be
some of the many tradeoffs to be made in the more detailed design
procedure used when developing an actual system.
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V. OPEN-LOOP CONTROl. HARACTFRTqTTC S
OF A THREE-DIMENSIONAL CANTILEVER WING WITH

CMG CONTROLLER

5.1 CMG Orientation

The basic approach to the design analysis of the three

dimensional wing parallels the typical section analysis

developed in Chap. II. The wing geometry is shown in

Fig. 5-1. It is assumed to be an unswept, constant chord,
cantilever wing, with rigid chordwise sections, having a

straight elastic axis and uniform structural properties.

Before developing the equations of motion for the wing con-

troller system, the most effective orientation of the CMG

should be determined. As can be seen from Figure 5-2, six

possible orientations exist, depending on the direction of

the gyro's precession and spin axes (for illustrative pur-

poses, only a single rotor of the twin-gyro controller is

shown). To be most effective, the output torque produced

by the CMG on the wing, MG/w, should be directed about an

axis of rotation of the wing (i.e., the X or Y axis).

Thus, cases 5-2b and 5-2e, which provide moments about the

Z-axis, would obviously not be a suitable choice. A pre-

liminary analysis has also shown, for the particular set

of parameters selected in this thesis (see Section 2.2),

that directing the CMG output torque about the X-axis,
cases 5-2c and 5-2f, does not provide adequate control

capability. Consequently, cases 5-2a and 5-2d appear to be

the most suitable CMG orientations. For low control torque

levels, the difference between the two orientations can be

considered negligible, and for the following analysis case

5-2a was selected. The equations of motion for the control

moment gyro in this orientation are derived in Appendix B.

5.2 Wing-Controller Equations of Motion

The dynamical equations of motion for the coupled tor-

sion and bending of a cantilever wing are derived in a number

of classic aeroelastic references, including Refs. 20 and 21.

These equations, with the inclusion of the CMG terms from

Appendix B, can be written

mh(y, t)+mGh (yt)8 (y-yG)+EIh 4t)o ~i(y,t)

(5-1)
+S Ga(y,t)8(y- y G ) = -LD -L
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Sa h(y, t)+SaGh (yt)(y-yG)+Iaa (y, t)+IaG (y,t)8(y-YG)

- GJg2 a(y t ) + Hwb(y,t)8(y-yG) = MD + Me  (5-2)
ay 2

- Hwa(yG,t)+IGz (YG,t) = Tc(YG,t) (5-3)

With the boundary conditions of a cantilever beam:

at y = o, h =2h = a = 0
ay (5-4)

at y =, 82 h _ - 3 h a = 0
Sy 2  ay 3  ay

The CMG is treated as a concentrated mass and is assumed

to generate a concentrated torque.about the Y-axis. Rota-

tional inertia terms about the X-axis and CMG effects on

flexural and torsional rigidity are considered negligible.

A number of methods are available for developing

solutions to the above equations. Runyan and Watkins (28)

developed a solution for a uniform wing with arbitrarily

placed, concentrated masses by extending the treatment of

Goland (29), in which the differential equations are attacked

directly. To obtain flutter information, this is the most

accurate approach for a uniform wing, but it does not allow

for a suitable means to determine control gains or to deal

with wings having non-uniform properties. A practical method
for performing flutter calculations is based on the assump-

tion that the motion of the system can be approximated by a
superposition of a finite number of certain selected modal

functions. This type of analysis is often referred to as a

Rayleigh type or the Rayleigh-Ritz method. Since a contin-
uous system, such as a wing, possesses infinite degrees of
freedom, the accuracy of the results depends, in general, on

the number and choice of modal functions to be used. The
two most common choices for these functions are either the

coupled or uncoupled modes of oscillation of the system in
a vacuum, since these functions satisfy structural boundary
conditions. In determining the uncoupled modes, bending and
torsion are assumed independent, such that the inertial
coupling terms, those containing Sa, are neglected in the

equations of motion. Physically, this is equivalent to

assuming, for pure bending, for example, that the mass
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distribution acts along the elastic axis with no torsional
deformation, and similarly for pure torsion, the wing is
assumed to be constrained from bending. A coupled mode
usually refers to a combination of torsional and bending
deformations appropriate to the natural normal harmonic
vibration of a freely oscillating system (30).

On a wing with a true elastic axis and utilizing strip
theory aerodynamics, it is computationally more convenient
to use uncoupled modes in the analysis (20). Furthermore,
Ref. 31, in comparing the coupled and uncoupled methods
with experimental results on a straight, uniform, canti-
lever wing with a large mass placed at various spanwise
locations, indicates that using coupled modes analysis
shows no better agreement with experiments, and that using
uncoupled modes shows a more systematic improvement of
accuracy when additional degrees of freedom are used. For
these reasons, the uncoupled mode method will be used in
this analysis.

The number of modal functions assumed in any flutter
analysis generally depends on the complexity of the struc-
t1e under consideration. Experience has shown, for simple
wing models without large concentrated masses, that satis-
factory results are obtained with two or three modes. The
assumption is made in this analysis that the CMG mass is not
large relative to the wing mass, otherwise little benefit in
weight savings would result using active control. The CMG
does, however, generate a concentrated torque on the wing,
whose effect may require the addition of more modes in the
analysis for sufficient accuracy. The procedure adopted in
the following open-loop analysis will be to assume four un-
coupled modes, consisting of the first and second bending
and torsion modes of the uniform wing. This results in an
18th order system. To determine whether the complexity of
this formulation can be reduced without loss in accuracy,
these results will be then compared with a two mode, 10th
order, analysis.

The bending and torsion deflections can now be written
as

h(y,t) = fhl (y)hl(t) + fh 2 (y)h2 (t) (5-5)

a(y,t) = fal (y)a l (t) + fa2 (y)a2(t) * (5-6)
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where fhl and fh2 are the first two uncoupled bending modes,
and fal and fa2 are the first two uncoupled torsion modes

of a uniform contilever wing oscillating in a vacuum. The

mode shapes are illustrated in Fig. 5-3 and can be repre-

sented mathematically by

fhl(y) = cosh(l.875-y)-cos(l.875y)-.734 sinh(l.875y)

- sin(1.875.y)] (5-7)

fh 2 (y)=cosh(4.694 "y) - cos(4.694*y)-l.018 sinh(4.694*y)

-sin(4.694"y)] (5-8)

fal(y) = sin -y (5-9)

fa2(y) = sin3--y (5-10)

To develop the ordinary differential equations of motion,

the classic approach of Galerkin (32) will be used. Thus,

Eq. 5-1 is multiplied by fhl and fh2 and Eq. 5-2 is multi-

plied by fal and fa2, and the resulting four equations are

integrated over the length of the wing. Assuming two-dimen-

sional strip theory, with the lift and moment per unit span

being represented by the expressions defined in the typical

section analysis of Chap. 2 , the equations of motion can be

written,

mFhlhl+Gf? fl(G)hl+FhlChlhl +Fhl,alSal + SaGfhl(yG)fal(YG)al +

mGfhlfh2 (YG)2 + Fhl,a2Sa&2 + SaGfhl (YG) fa2 (YG) 2

= -pb 2 {Fhl1 + U (Fhl,all + hl,a22 (5-11)

-ba Fhl,al +  hl,a2a2] -2 b U dE

- ba[Fhlal a l + F hl~a+a2"b uJ) a

EFhlhl +U(Fhl,alal+Fhla22)+b( (Fhlalal ,a2

x -(T -7E)dE

*NOTE: To be consistent with the typical section analysis,
h and a are retained to represent the bending and torsion

deflections. However, similar subscripts between the two

analyses may refer to somewhat different quantities. Hope-

fully, the formulation is straightforward enough so that no

confusion results.
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mFh2. +Gh Y )h 2- ~hl fh2 h+h 2Ch2h2+S Zall

+ s Gfh 2 fai (YG)61±Sa Fh2 .,a2a2±7af h2 fa2 (YG)a 2

=-nrpb
2 IFh 2 h 2 +U [Fh2,al&1+Fh2,a2&2]

-ba[Fh2,alci1+Fh2,cia2 ]-2 7T pbi4 d

[h2 i 2 +uh 2 ,tal+F h2 a 2a 2 )+b (12-a) (Fh2,aj.&1+Fh2,a2&2) x

SaFhl, alhl+-iGfhifa1(yG)h1+SOFh2 ajh2+j'fh2fa1 (YG)h2+IaFa1li1

2lY I alfa2(YG) 2+aFa1f1

=Tpb 2 ba[Fhl,alh1+Fh2 ,alh2]- Utb(32a)Fal&lb 2 (/+a 2)Falal]1

+2n~pUb2 a~ [F1alh+Fh2,alh2+UFaja+b( aFa 11(r -)dt
0

(5-13)

S Fh1, a+fhl~2YGfSah ah+SGf2f (YGh 2 + IF 2

Gz '~f~(YG)+Ca~2,a2h2+Ff~a a

+T 2Y~Z a2(YG)'~

-7 fpb 2, ba[Fhla2l-IFh2,a2h2] Ub( ,-a{Fa22b 2 (1/a+a 2)Fi2C21

+27TpUb 2( +a) Sodt [h,a2 h2,a22 a2 22]

(5-14)
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- Hw [lfal(YG)+2a2(YG)J +Iyi = Tc (5-15)

where Fhl -jofhl2 (y)dy

Fh2 1 fh2 2 (y)dy

Fal = fal2 (y)dy
o

Fa2 = 10 fa22(y)dy

Fhl,al fhl fal (y)dy (5-16)

Fh2,al 1 2 fh2 fal (y)dy

Fhl,a2 = I fhlfa2(y)dy

Fh2,a2 = 1 fh2fa2(y)dy

Chi = 1 EIfhl f(y)dy

Ch2 = EIfh2f h(y)dy

Ca GaIl (y)dy

Ca2 = GJfa2 fa (y)dy

Another often used procedure for obtaining the equa-
tions of motion is to first develop expressions for the kinetic
and potential energies of the system and then apply Lagrange's
equations (33). The resulting equations would, of course,
be the same.

5.3 Open-Loop Characteristics of Wing-Controller System

Paralleling the procedure of Chap. 2 to determine the
characteristic equation, Eqs. 5-11 and 5-12 are divided by
npb 3 , Eqs. 5-13 and 5-14 are divided by rpb 4 , and the Lap-

lace transform of the resulting equations is taken. The
equations become, in matrix form,
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+2i 2 ()}hl 20-

FhlG 2 x~l/-as +1+1-a)p(S) u {(xa2tLa)S2+[+(12aX'g]us hOji .111 0 2 0
2 hr +2jj2,(;) Fhl.a2 b

2 2 -2

F hlal Fh2,al + a~--k22,~) 9 cl 3 a 0

2 2- - r 2 - 1 r22i+I~

+rc-6 (1+2a)o(i) }F.2

0 0 .- G0 1 i -G0 2s, -
S UI



where, in this case

- U
u s=

al

In determining the effect of the CMG on the dynamic

characteristics of the wing, the values of the nondimen-

sional wing parameters corresponding to those previously

used in Section 2.2 have been selected. The effect of

the CMG parameter, G2, on flutter velocity and flutter

frequency is illustrated in Figs. 5-4 and 5-5, respectively.

for two different span locations of the CMG, corresponding

to the midspan and wing tip. The CMG is assumed to be

weightless. Also shown are comparisons between the two

mode, four mode, and typical section analyses.

It can be seen from these figures that the two mode

analysis appears to provide sufficient accuracy for in-

creases in the flutter velocity parameter up to and beyond

3.0, and that the typical section analysis is seen to corres-

pond closely to the three-dimensional case with the CMG at

midspan. A comparison of the root loci, using the three

methods of analysis, for particular designs having 5F = 2.5,
is shown in Fig. 5-6. The effectiveness in increasing the

flutter velocity by moving the CMG to the wing tip is evi-

dent from Fig. 5-4 and is shown more explicitly in Fig. 5-7

for various values of CMG weight. Increases in weight,

generally decrease the flutter velocity, except in the

vicinity of the wing tip, where the flutter velocity varies

only slightly with CMG weight. Although the flutter velo-

city remains fairly constant, Fig. 5-8 shows that the

flutter frequency tends to decrease with CMG weight increases.

From the above analysis, locating the CMG controller

at the wing tip appears to provide the most effective control

on the system. In Chapter VI, the feedback characteristics

of various designs with this CMG location will be determined.
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VI. FEEDBACK CONTROL OF THE THREE-DIMENSIONAL
WING-CONTROLLER SYSTEM

6.1 Introduction

Obtaining solutions to the feedback control problem
of a continuous, elastic, unstable system, such as a wing
in an airstream travelling faster than the critical flutter
velocity, can be most difficult. Exact solutions of just

the aeroelastic problem have been developed for only a few

special cases. Since the wing is actually an infinite-

degree-of-freedom system, and thus has infinite states,

new, more realistic, meanings must also be found for the

concepts of controllability and observability (34). In

Chap. 5, it was shown how the continuous system could be

approximated by an equivalent system with finite degrees
of freedom, and furthermore, in our particular case, how.

describing the system with only two modes of vibration
can result in reasonable accuracy in determining the

system's flutter characteristics. There is no guarantee,
however, that this simple model will be valid for the feed-
back case. Higher modes may be excited and possibly driven
unstable in attempting to control the lower modes. Thus,
certain questions arise in examining the control problem
of even the approximate system: 1) What is the minimum
number of modes to be included in the analysis to insure
that the controlled system is stable over the required
range of velocities?, 2) What is the minimum number of
controls needed for controllability and/or stability?,
3) What are the essential feedback parameters to achieve
stability?, and 4) How many measurements are needed to
establish observability for the system? These questions
will be discussed in some detail in the following sections.

6.2 State Variable Selection and Controllability

The method of design using arbitrary dynamics and the
concept of controllability were discussed in Chap. 3. For
convenience in determining the control characteristics of
the three-dimensional system, the system equations, Eqs.
5-17, are first put in standard state variable form. As
in the typical section case, a decision as to which quan-
tities are selected as states must be made, with the added
complexity for the three-dimensional wing in deciding how
many vibrational modes to assume in the analysis. Each
additional assumed mode increases the number of states by
four, due to the particular modeling of the incompressible
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aerodynamics. Thus, for the two mode Lnalysis, the system

could be represented by ten states (two states corresponding

to the CMG), and eighteen states would be needed if four

modes were included in the analysis. It is obvious that

the amount of analysis and various design requirements such

as sensor and feedback selection, could be substantially

reduced if only two modes are necessary to obtain accurate

control information. For that reason, and because the two

mode analysis proved adequate in determining the open-loop

system characteristics, a feedback control design using two

modes was first attempted. The gains obtained from this

analysis were then used to determine the characteristics

of the system, approximated by four modes, to verify the

accuracy of the two mode method.

The selection of the ten states defining the two mode

system is made consistent with those chosen in the typical

section analysis of Chap. 3. They are

hl = hi  (6-1)

h12 = h l  (6-2)

all = al (6-3)

a1 2  = l (6-4)

a a (6-5)

a 2  = & (6-6)

S = (1+bl)Fhl h 1 2 + (XxllF-a)Fhl,a cl2 (6-7)

6= +(,j l h 1 2  (6-8)

52 = il+ [(l+P1)dl+1uFhl b-+u [(xalla)+14(l-2a)n2 (6-8)

Fhl,alal 2

e3 = (Xll/-a)Fhl,l 12 ral 2++a2 Falal2 (6-9)

h12 2( 2 dl

4=  (xall _a)dl-(1+2a)n2]Fhlal li + 2 [ral+1 +

+(I-2a)- 2 (1+2a) uF2 -G112+ 3 (6-10)

-62-



Following the procedure developed in Section 3.1, the

appropriate portions of the set of Eqs. 5-17 are multiplied

by D,(§) and the inverse Laplace transform taken, remem-

bering that in the two mode case

fh2 = fa2 =, Fh2 = F2 Fh2,al Fh2, 2 -

Fa2,hl = Fa2,h2 = 0

The resulting equations are then written using the state

variable definitions, Eqs. 6-1 to 6-10, and put in the

matrix form, Fig. 6-1, where the matrix elements are

defined in Appendix D.

As discussed in Section 3.3, a necessary and suffi-

cient condition for modal controllability is that the con-

trollability matrix be nonsingular. It can be shown that

this matrix defined by

C = [G FG . . ......... iFn-1G

is non-singular for the parameters selected in this analysis

with G11, G01 >0 , u 0.. Furthermore, the system remains

controllable, using just one controller, even when the num-

ber of modes in the analysis is increased, so long as the

quantities, fhi(YG) and fa(YG) do not equal zero. This

requirement is met with the CMG at the wing tip. These

results are, of course, theoretical, with the assumed modes

and aerodynamic model being approximations. Experimental

verification of controllability of any design would be

necessary to insure that the control or sensors are not

located at the node of a particular mode of vibration.

6.3 Design by Arbitrary Dynamics

To investigate the feedback characteristics of the
system defined in Eqs. 6-11, a particular CMG-controller,
having a G2-value of 1.13 and CMG-to-wing mass and moment
of inertia ratios of .05, was selected for analysis. For
flutter velocity increases up to 50% (i.e., uF = 2.55),
this system will have only two critical roots. Based on

the typical section analysis in Sect. 4.3, this system
will be the design having minimum power requirements, if
the critical roots are placed on the real axis. Assuming
a control law of the form
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hll/b 0 1 0 0 0 0 0 0 0 0 hll/b 0

hl2/b 0 0 0 0 0 0 F(2,7) 0 F(2,9) 0 h12/b 0

all 0 0 0 1 0 0 0o o o 0 1 1  0

"1 2  0 0 0 0 0 0 F(4,7) 0 F(4, 9 ) 0 a1 2  0

l 0 0 0 0 0 0 0 0o 0 0 O 0 Tc

02 0 0 0 F(6,4) 0 1 0 0 0 0 02 1

1 0 0 0 0 0 0 F(7,7) 1 F(7,9) o ei 0

2 F(8,1) F(8,2) F(8,3) F(8,4) 0 0 F(8,7) 0 F(8,9) 0 2 0

3 0 0 0 F(9,4) 0 0 F(9,7) 0 F(9,9) 1 3 Gii

4 0 F(10,2) F(10,3) F(10,4) 0 F(10,6) F(10,7) 0 F(10,9) 0 L dlG 1

(6 - 11)

FIG. 6-1 TWO MODE EQUATIONS OF MOTION



T r  = Kl + K2 L1 + K3 1 
+ K4  - K5 a- K6  (6-12)

+ K7  1 
+ K8 e2 + K9g 3 + K10 4

and utilizing Eq. 3-26 results in feedback gains, varying
with velocity, shown in Table 6-1. Since the three-
dimensional wing is stable without the CMG for ii<1.7,
only the feedback characteristics for u >1.7 were con-
sidered of interest.

TABLE 6-1

SCHEDULED GAINS FOR FLUTTER ,SUPPRESSION
TO u = 2.55

u KI  K2 K3 K4 K5  Kg K7  K8 K9 K10

1.9 .006 .009 .057 .014 .006 .080 .0 .001 .001 .005

2.1 .006 .008 .052 .014 .006 .081 0.0 .001 .002 .005

2.3 .005 .006 .048 .016 .006 .084 0.0 .001 .001 .005

2.5 .0045 .006 .043 .017 .007 .086 0.0 .001 .001 .004

As was discussed in the typical section analysis of
Sect. 3.4, when there are only two critical roots the gains
remain fairly constant with velocity. The relative sizes
of the gains indicate that full state feedback may not be
necessary. A number.of reduced state feedback systems,
using constant gains and meeting the stability criterion,
are possible, three of which are shown in Table 6-2:

TABLE 6-2

CONSTANT REDUCED GAIN DESIGNS FOR u = 2.55

a) b) 22
K3 = .043 K1 = .0045 K3 = .043
K5 = .020 K3 = .03 K4 = .017
K6 = .086 K5 - .04 K5 = .020
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A comparison of the root loci obtained for the sche-
duled gains of Table 6-1 and the constant reduced gains of
Table 6-2, case a), which requires the feedback of a, a ,
and &, is shown in Fig. 6-2. The final selection of any
feedback scheme will depend on sensor and power requirements,
with any variation from the gains in Table 6-1 resulting in
increased power.

The simplest control design would be to just feedback
a . However, the large power increase associated with

this design (cf. Fig. 4-5) would probably make it infeasible.

6.4 Higher Mode Instability

Although a number of designs have been developed for
suppressing flutter in the system defined by Eqs. 6-11,
there is no assurance, as yet, that the gains determined
will stabilize this system with higher modes included in
the analysis. An example of the occurrence of such a
higher order instability is presented in Ref. 35 for a
flexible launch vehicle. To guard against such occurrences
in a design, usually more modes are included in the control
analysis than are necessary to accurately determine the
passive flutter characteristics. For example, in Ref. 36,
although three modes were sufficient to predict the critical
flutter velocity, seven modes were used in the control
system design analysis.

To determine the effect on higher modes of the designs
developed in the previous section, constant gains, corres-
ponding to u = 2.5 in Table 6-1, were used, and the second
bending and second torsion modes were included in describing
the wing-controller system. The resulting root locus is
shown in Fig. 6-3. From the figure, the problem of higher
order instability appears not to exist. Similar results are
found for the gains in Table 6-2. This is not the case,
however, if different root locations are selected for the
critical roots. Figure 6-4 shows the locations of roots
corresponding to different values of the imaginary part of
the critical root at a velocity corresponding to u = 2.5.
From Fig. 6-3, it can be seen that, although the roots
associated with the first bending and torsion branches re-
main relatively constant as the imaginary value of the
critical root is increased, the higher order roots do vary,
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-67-



IMAGINARY

s-Plane

-4.0 G2 = 1.13
u = 2.5

3.0

-3.0

u = 3.0 2.5 1.9 1.0

2.0

3.0 2.53.0 2.52.5 -1.0
3.0

OTHER ROOTS ALONG AXIS

-.6 -.4 -.2 REAL
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with one root eventually becoming and staying unstable.
Similar results will occur, if other prescribed root
locations in the two mode analysis cause the gain values,
and thus the power requirements to be large. The gains
in Table 6-1 were selected by minimizing the value of power
required for control upon encountering an impulsive gust
disturbance. This criterion caused the minimum perturba-
tion in the non-critical roots and resulted in low gain
values. If other optimum criteria are established, for
example, by defining certain weighting matrices in the
quadratic synthesis analysis discussed in Sect. 4-1, pro-
blems in higher mode instability may occur.

6.5 System Observability

As was discussed in Section 3.5, the sensor problem
could be reduced if all the states could be estimated
from a measurement of a . The system, Eqs. 6-11, will be
observable if the observability matrix, defined in Eq. 3-27,
is non-singular. It can be shown that the observability
matrix is non-singular for the parameters selected in this
analysis for G0 1 , G11 , >0, ii0. The system does not re-
main observable with a single measurement, however, if
higher modes are included in the analysis, even if fhi(YG)
and fai(YG) do not equal zero. The relationship between
the modes (cf.Eqs. 5-5 & 5-6) requires additional measure-
ments as the number of selected modes increases, since only
a(t) (or h(t)) and not al(t) and a2 (t) can be determined
from a single measurement. This illustrates another advan-
tage to the design of Sect. 6-3, which required but two
modes for a suitable design.
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VII. CONCLUSIONS & RECOMMENDATIONS

7.1 Conclusions

An analysis, utilizing modern control techniques for

designing active flutter suppression systems with a con-

trol moment gyro as the controller, has been presented.

The following conclusions can be drawn:

1. The concepts of modern control theory provide a

well-organized, systematic, and mathematically

powerful approach to the design of active flutter

suppression systems. Using the method of arbi-

trary dynamics, feedback gains, which produce

stable systems having satisfactory response

characteristics, can be easily obtained in a

straightforward manner over a wide range of

structural, geometric, and aerodynamic parameters.

The solution for optimal gains based on a variety

of cost functionals can be incorporated into the

design not only for the single input/single output

case considered here, but can be adapted to multi-

input/multi-output systems. If full state feed-

back systems are not feasible, these methods

provide starting points in obtaining reduced feed-

back and suboptimal designs.

2. The control moment gyro has certain attractive

design features which warrant its consideration

as an alternative to aerodynamic surfaces for ac-

tively suppressing flutter modes. Controller

designs characterized by simplicity, quick re-

sponse, and low power requirements can be developed.

3. Although the flutter suppression analysis in this

thesis was accomplished using a control moment gyro,
certain design results can be applied generally to

any controller.

(a) Controllability can be achieved using only

one, properly placed, controller for signifi-

cant increases in flutter velocity.

(b) When using arbitrary dynamics, noncritical

roots should remain constant.
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(c) For introductory analyses, relative feed-
back gain size is a reasonable design

criterion for evaluating prospective designs.

(d) Optimization criterion, such as minimizing a
quadratic cost function, should be used
cautiously, with the possibility of higher
order instability kept in mind.

(e) Two-dimensional analysis can provide valuable
insight in developing practical design pro-

cedures and determining basic system charac-
teristics.

(f) Certain aerodynamic surface parameters, such
as flap width and/or length, can play a role

similar to G2 in selecting optimum designs.

7.2 Recommendations

In the field of active flutter suppression there are

many possible areas of further research, many of which are
discussed in Ref. 4. Recommendations evolving more directly

from the results of this thesis are the following, some of

which are presently being pursued at Stanford:

1. Application of the control moment gyro concept as
primary control device or in conjunction with
aerodynamic surfaces, to an actual wing model, to
determine realistic sizing and power requirements.

2. Application of the design techniques, procedures,
and tradeoff studies outlined in this thesis to
an aerodynamic surface control, to compare power,
performance, and complexity of design.

3. Establishment of a practical design optimization
criterion, thereby providing a more thorough
understanding into the cause and prevention of
higher order instability.

4. Development of suitable mathematical modeling of

the aerodynamics in subsonic, transonic, and super-

sonic flow over complex elastic structures to allow
the broad application of modern control technikes.
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5. Establishment of sensor and estimator require-
ments to determine the required feedbacks for
stable and optimum designs.
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APPENDIX A

AERODYNAMIC FORCES ON A TWO-DIMENSIONAL

WING SECTION IN UNSTEADY INCOMPRESSIBLE FLOW

Critical to the application of certain design techni-

ques used in this thesis, such as the root-locus diagram and

state variable formulation, is the particular modeling of

the two-dimensional, transient aerodynamic forces using the

Wagner indicial function. Although this concept is familiar

to most aeroelasticians, it is felt that a brief description

of its derivation is warranted.

First, the aerodynamic forces in two-dimensional, in-

compressible flow on a surface oscillating in simple harmonic

motion are considered. Using potential flow theory, Theodorsen

(22) obtained results for lift and moment in which the solu-

tion was separated into two components, corresponding to

circulatory and non-circulatory portions of the flow field.

The resulting equations can be written

L = pb2[h+Ua-bag+2tpUbC(k) [h-Ua+b( -a)a] (A-l)

M= rpb2[ba-Ub ( -a)-b 2 ( +a82 )

+2pUb 2 (a+)C (k) h+Ua+b ( -a)] (A-2)

The non-circulatory components are contained in the

first set of terms in Eqs. A-I and A-2, and are also valid

for arbitrary motion as long as it is small. In the second

set of terms, C(k) is,commonly known as the Theodorsen

function and is evaluated by solving certain complex inte-

grals resulting from the potential flow formulation. The

Theodorsen function is complex and can be written after

integration H1(2)(k)

C(k) = F(k) + iG(k) = Hl(2)(k)+ iHo(")(k) (A-3)
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where HI(2) and Ho(2) are Hankel functions of the second

kind. A complex polar plot of C(k) is shown below.

G(k)
.5 1.0

0 K= K0 F(k)
K=0

-.1 K=1.0 K=.05

-. 2 K=.4 K=.1
K=.2

-.3

Fig. A-1 COMPLEX POLAR PLOT OF C(k)

These results have been used extensively for flutter

prediction for many years, and can still provide a source

of relatively reliable reference data for large aspect ratio

wings even though they actually have supersonic flutter

speeds (20).

Theodorsen's formulation for C(k) is invalid, however,
for convergent oscillations in arbitrary motion. One

method for solving this problem employs a superposition

(Duhamel) integral of the linear results for simple harmonic

motion.

Corresponding to the steady state case, Wagner (23)

determined the lift on an airfoil considering the growth of

circulation about the airfoil as it starts impulsively from

rest to a uniform velocity, U. The form of this lift is

L = 2 7pb Uw t (E)

where w is the downwash velocity, E is a non-dimensional

time, and C (t) is the Wagner indicial function. Wagner's
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function was originally calculated by using a vortex-sheet
method (23). The method described here somewhat parallels
the approach in Ref. 24.

Because of linearity, it is possible to determine the
lift due to circulation for any arbitrary motion of the air-
foil by superposition. In an interval dE the downwash w(t)
increases by the amount, dw(E) dE. When dt is small, this

dE

may be regarded as an impulsive increment and the lift can
be determined by convolution:

L = 2b w(o) V(o) (t-t') dt (A-4)

It is a convenient fact that in incompressible flow
the circulatory component of force on an airfoil is deter-
mined by the downwash velocity at the 3/4-chord (cf Eqs.
A-I & A-2) which has the form

w3/4c = h +U + b ( 2-a) (A-5)

Thus, only one Wagner function is required to describe the
arbitrary motion. The Wagner function is evaluated by
assuming

ike
w(t) = woe

in Eq. A-4 and comparing the results to Theodorsen's form for
the oscillatory lift, Eq. A-I, which can be written

L = 2 b pUC(k)w oeikt (A-6)

After some manipulation of terms, the Wagner function can be
written as

s(t) = sin kE dk (A-7)

and its behavior as a function of t is illustrated in Fig.
A-2.
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FIG A-2 WAGNER INDICIAL LIFT FUNCTION

Although 94(t) has a relatively simply graphical form, it

is not mathematically expressible in terms of well-known

functions. Therefore, several accurate approximations have

been developed (20). For convenience in taking Laplace

transforms, a particularly useful one for application in

this thesis, is the form

() 1- .165e-.0 4 55  - .335e - .3 t (A-8)
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Appendix B

GYRO EQUATIONS OF MOTION

In the twin-gyro controller, the equal but opposite
precession of the gyro rotors can be obtained by using two
torquing motors or by using one motor with proper gearing
between the two gyros. The development of the CMG contri-
bution to the typical-section equations of motion follows
the derivation in Ref. 19, in which one motor is used.
For this analysis, the following assumptions are made:

(1) The CMG twin-gyro controller is rigidly
attached to the wing.

(2) The spin speed of each rotor is assumed equal
and constant with respect to its respective
gimbals.

(3) The rotor spin axes are principal axes.

(4) The moment of inertia of the typical section-
controller combination about the elastic axis
(y) is independent of the gyro gimbal angle
a (Fig. B-1).

(5) The typical section rotates only about the
elastic axis.

Z

z

g2 a

Y,y

X h g

T

FIG. B-1 TWIN-GYRO CONTROLLER ROTORS
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The total angular momentum of the gyro controller is

HTG = HGl + HG2 + HF (B-l)

where

HTG = total angular momentum of the twin-gyro
controller

HGI = total angular momentum of gyro 1, including
rotor and gimbal

HG2 = total angular momentum of gyro 2

HF = total angular momentum of twin-gyro
controller "fixed" elements.

From Fig. B-1

GI g cos x + (hg sino + Ily&)y
(B-2)

+ Ilzoz

where

hg1 = angular momentum of gyro rotor 1

Ily = moment of inertia of gyro 1 about y axis

Ilz = moment of inertia of gyro 1 about z axis.

Similarly,

HG 2 = -hg2 coso x + (hg2 sin + 12y&)y - 12z&Z; (B-3)

also

HF =  IFay (B-4)

where IF is the moment of inertia of the fixed components
about the y axis. Combining Eqs. B-l, B-2, B-3, and B-4
and letting hgl = hg2 , Ilz = I2z yield

HTG = (Hw sin a + ly&) y (B-5)
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where

Hw = 2hgl = 2hg2

Iy = Ily + I2y + IF

Equation B-5 illustrates the features of the twin-gyro
controller in which the momentum change will occur about the

y axis and crosscoupling terms cancel.

To obtain the contribution of the controller to the

typical-section equations of motion, Eq. B-5 is differentiated
with respect to time in an inertial reference frame and ex-

pressed in the wing reference frame by the theorem of Coriolis
as

i w

HTG TG TG w/G. (B-6)

Here the superscript i indicates differentiation with re-
spect to time in an inertial frame; the superscript w
indicates time differentiation in the wing frame; Z7 is
the angular velocity of the wing frame with respect to the
inertial frame which is this analysis equals &9 ; and Mw/G
is the reaction moment of the wing on the controller.

Equation B-6 can be written in scalar notation since

the momentum and rotation are about the y axis. It becomes

i
HTG = y + H acos = Mw/G . (B-7)

An equation involving the control torque and the gyro

parameters can be obtained by differentiating Eqs. B-2 and

B-3 and applying the theorem of Coriolis. This results in

i (Ilz&+hgl o sina) +(hgl a cosa +ly&)y
HG1

+ (Ilza-hgl acosa )z = T (B-8)
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-- = (-I2z&+hg2 sin a )+(hg2 icosa +12y&
HG2

+ (-I2zU+hg2 acosa )z = T , (B-9)

where T and T2 are the torques on gyro 1 and 2 respec-
tively.

Subtracting Eq. B-9 from Eq. B-8 and taking the, compo-

nent in the Z direction gives

IGz H - H a cosa = TI z - T2z (B-10)

where

IGz = lz + 1 2z

Tlz = torques about z axis on gyros 1 and 2

T2z respectively.

Since the gyros are geared together,

Tlz = -T2z'

Therefore, let

Tlz - T2 z = 2Tlz = Tc

where Tc is defined as the control torque supplied by the

torque motor on the twin-gyro system about the z axis.

Equation B-10 becomes

IGz i - Hw . cos o  = Tc. (B-11)

With the assumption of small gimbal-angle oscillations about

a = 0, Eqs. B-7 and B-11 can be linearlized by setting

cosa;l. The linearized equations are

I + Hwa = W/G (B-12)

-H + IGzo = Tc. (B-13)
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Equations B-12 and B-13 are now used in conjunction with the
equations of motion for the typical section to describe the
motion of the wing-controller system and are applicable for
use in the three-dimensional case under the assumptions of
Chap. 5.
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APPENDIX C

TYPICAL SECTION OPEN-LOOP CHARACTERISTIC EQUATION

The characteristic equation described in Chapter II is

2 {A6S 6+uA 5 
5+ ( 2A4 1+A 4 2+A 4 3 G2 ) s

4 +u (i 2 A3 1 +A 3 2 +A3 3 G2 )3

+ [ 4 A2 1+a
2 A2 2+A 2 3+ 2A2 4 +A 2 5)G 2] g2

+ [u2 All+AI2+(u2A 13+A 14 )G2]s

+ u2 (2A01+ +2+A3G2) = 0

where

Ag = (1+ ( u ++a2)-(x,-a)2

A5 = dlA6+[ (l+)- (x+a)]+n2 [2(r2+a
2 )+(4xaa- )b- ]

= dlA6+A5D+n2A5N

A4 1 = doA 6+dlA5D+nlA5N+n2 [1-/x(1+2a+2xa)]

AA2 - I22 2)+r2g(1+p

A4 3 = (1+p)

A3 1 = doA5D+noA5N+nl [1-.(1+2a+2x,)]

A3 2  dlA42+ h 2

A3 3 = 2n2+(l+j)d 1

A2 1 = no [l-(1+2a+2xa)]

A2 2 = doA 4 2+dl 2 2(-a)l+n [2r2-( (-2a2

- n2 ) 2(1+2a)
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A23 = t a

A 2 4 = 2nl+(l+/L)do

A = =oh)2
A25 wa

All = d 2(-[)+n 2r ( 2 -2a2) (h 2

x /i(1+2a)

A1 2 = dlA 2 3

A1 3 = 2no

A 14 = dlA25

AOI = -n LW(1+2a)

A0 2 = doA 2 3

A0 3 = doA25

F71 = u (B+A5D)B4 (I+ a)
A6

2 2
F73 = u (Bl+A5D)r/

A6

F 74 = 1-(B1+A5D)

F7 6 = f-_ GI (Bl+A5D)A6
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F 7 7 A= l n2 A 5 N+dlA- [B2+B(.+a)]

F B4  [( -- a)

F812 (2nlA5D+Bldl+Bl)-A 6do] -B2B ( +a)}

F82 = -(2noi2+B4dl)r

F83  -LrL [2nj
2A5D+a2Bl(d+1) -B2B4]-2A 6 noii

4

F84 = i 2n A5D+ u2 (dl+1)-B2B4]

- A6a2 [do+B 3no+2nl]}

F86 = - 2nll2A 5D+j2Bl(d+1)-B2B4}

F 8 7 = 1 (2 doA 6+nlA 5 N- (dl+l) [B2+B(+a)] 1

+B4 [B2 ( +a)+r2p++a 2
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APPENDIX D

ELEMENTS OF TWO MODE, OPEN-LOOP DYNAMICS MATRIX

The open loop dynamics matrix, developed using two

uncoupled modes of vibration, is written in Eq. 6-11. The

elements of that matrix are defined as follows:

F(1,2) = 1.0

F(2,7) = (r,21 + + a 2 )F/A

F(2,9) = -(xall/-a)Fhl,al/A

F(3,4) = 1.0

F(4,7) = -(xalla-a)Fhl,al/A

F(4,9) = (1 +bl)Fhl/A

F(5,6) = 1.0

F(6,4) -Gol

F(7,7) = [(+ ) dl+l] F(2,7)Fhl+ [(xallM-a)dl+1l

+ B3n2 ] F(
2 ,9 )Fhl,al u

F(7,8) = 1.0

F(7,9) =- [(xll-a)dl+l+B3n2 ] F(4,9)Fhlal+

[(l+L)dl+F1 (4,7)Fhl u

F(8,1) = - h2 d hl2

F(8,2) = -2o u3 + d u Fh

F(8,3) = - 2n o 5 4 Fhl,al

F(8,4) = - [d + B3 no + 2n1 u3Fhl,al

F(8,7) = -u2 ((l+ 1)do+2n+ 2hl FhlF(2,7)

+ [(xall4-a)do+dl+B3 nl+l] 2 Fhl, alF(2,9)
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F(8,9) - xajj/i-a)do+dl+B3 nl+I u Fhlce1F(4,9)

+[Z12Q(l+/i'.ldo+ 2n,) +kL(- a) ]FF4,7

F(9,4) = -G01 Gil

F(9,7) = [~(xczjlb-a)dj-(1+2a)fl2]Fhl,alF(2, 7)

+ [(r 2 ,VL++a 2 )d+L3 -(k-a2)n2l Fa1F(2,9) u

F(9,9) r2 k+I+a2)dl+B3 -(32--2a 2)n2 i (4,9)

F(9,19) = l( 8 2 1j~

+ [(xallp.-a)dl-c1+2an2]Fh1,alF(4,7) ii

F.(9,10) = 1.0

-3
F(10,2) = (l+2a)rbU Fhl,aI

F(10,3) = -[r,,iudOi2 -(l±2a)no&']Fx1

F(10,4) = - j3[L do-( ,-2a2)flo-(1+2a)flh+ra 2 djF,

- Gol G11dlia

F(10,6) = ldU

F(10,7) = - I [(xlluFLa)do- (1+2a)nhl u2Fhl,a1F(2, 7)

+[ii2 [(xaiiJ1,-a)do + B3dl...(2-2a 2)nI

-(l2a 2 n2+r 2 ] FaijF(2,9)

F(10,9) = j~2xallp-a)do+B3 dj-Q,-2a2)l1 -(1+2a)l2]
1[L2 2

+r. AL] FalF(4,9)+ [(xcallp.-a)do- (1±2a)'nll x

Ti2 Fhl) alF (4, 7
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Where

A =  (1+1) (r 2+!+a2FhlFa-(xll-a) 2Fhl al

-88-



REFERENCES

1. Johannes, R. P., "Performance Advantages Offered by

Advanced Flight Control Technology", AIAA Paper No.

70-874, July 1970.

2. Johannes, R. P., "Active Flutter Control-Flight Test

System Synthesis", JACC Paper No. 7-El, August 1971.

3. Swaim, R. L., "Aircraft Elastic Mode Control", Journal

of Aircraft, Vol. I, No. 2, February 1971, pp. 65-71.

4. Thompson, G. 0. and Kass, G. J., "Active Flutter

Suppression -- An Emerging.Technology", Journal of

Aircraft, Vol. 9, No. 3, March 1972, pp. 230-235.

5. Topp, L. J., "Potential Performance Gains by Use of a

Flutter Suppression System", JACC Paper No. 7-B3,
August 1971.

6. Thiesen, J. G., and W. C. Robinette, "Servo Control

of Flutter", AIAA Structural Dynamics and Aeroelastic

Specialist Conference Proceedings, April 1969, pp.

228-240.

7. Moon, F. C., and Dowell, E. H., "The Control of Flutter

Instability in a Continuous Elastic System using

Feedback", AIAA/ASME llth Structures, Structural

Dynamics, and Materials Conference, Volume of Techni-

cal Papers on Structural Dynamics, Denver, April

1970.

8. Kalmbach, C. F., "Feedback Control of Flutter Instabi-

lity in a Continuous Elastic System", AIAA Journal,

Vol. 10, No. 5, May 1972, pp. 711-712.

9. Hodges, G. E., "Active Flutter Suppression - B-52

Controls Configured Vehicle", AIAA Paper No. 73-322,
1973.

10. Triplett, W. E., Kappus, H. F., and Landy, R. J.,
"Active Flutter Control: An Adaptable Application

to Wing/Store Flutter", AIAA Paper No. 73-194, 1973.

11. Nissim, E., "Flutter Suppression Using Active Controls

Based on the Concept of Aerodynamic Energy", NASA

TN D-6199, March 1971.

-89-



12. Miller, B., "USAF Plans Advanced Fighter Program",
Aviation Week & Space Technology, July 16, 1973,
pp. 14-16.

13. White, J. S. and Hansen, Q. M., "Study of a Satellite
Attitude Control System Using Integrating Gyros as

Torque Sources", NASA TN D-1073, September 1961.

14. Cannon, R. H., Jr., "Basic Response Relations for
Satellite Attitude Control Using Gyros", Proceedings
of IFAC, Butterworths, London, 1963, pp. 535-544.

15. Havill, J. R. and Ratcliff, J. W., "A Twin-Gyro Atti-

tude Control System for Space Vehicles", NASA TN

D-2419, August 1964.

16. Liska, D. J. and Jacot, A. D., "Control Moment Gyros
in Attitude Control", Journal of Spacecraft and

Rockets, Vol. 3, No. 9, September 1966, pp. 1313-

1320.

17. Huston, R. L., "Twin-Gyro Attitude Control Systems",
Journal of Spacecraft and Rockets, Vol. 3, No. 7,
July 1966, pp. 1136-1138.

18. Campbell, R. A., "Performance of a Twin-Gyro Attitude
Control System Including Passive Compensation and a
Nonlinear Control Law", NASA TN D-5868, August 1970.

19. Pasternack, S., Jr., "Attitude Control of Hopping
Vehicles", Ph.D. Dissertation, May 1971, Dept. of
Aeronautics and Astronautics, Stanford University,
Stanford, Calif.

20. Bisplinghoff, R. L., Ashley, H., and Halfman, R. L.,
Aeroelasticity, Addison-Wesley, Cambridge, Mass., 1955.

21. Bisplinghoff, R. L. and Ashley, H., Principles of
Aeroelasticity, John Wiley, New York, 1962.

22. Theodorsen, T., "General Theory of Aerodynamic In-
stability and the Mechanism of Flutter", NACA
Report 496, April 1935.

-90-



23. Wagner, H., "Uber Die Entstehung Des Dynamischen
Auftriebes von Tragflugeln," Z. Angew. Math. Mech.,
Bd5, Heft 1, Feb. 1925.

24. Garrick, I. E., "On Some Reciprocal Relations in the
Theory of Nonstationary Flows", NACA TR 629, 1938.

25. Gopinath, B., "On the Identification and Control of
Linear Systems", Ph.D. Dissertation, 1968, Dept.
of Electrical Engineering, Stanford University,
Stanford, Ca.

26. Bryson, A. E., Jr., and Y.-C. Ho, Applied Optimal
Control, Blaisdell, Waltham, Mass., 1969.

27. Hall, W. E., Jr., and Bryson, A. E., Jr., "Optimal
Control and Filter Synthesis by Eigenvector Decom-
position", SUDAAR No. 436, November 1971, Dept. of
Aeronautics and Astronautics, Stanford University,
Stanford, Calif.

28. Runyan, H. L., and Watkins, C. E., "Flutter of a
Uniform Wing with an Arbitrarily Placed Mass According
to a Differential-Equation Analysis and a Comparison
with Experiment", NACA TN 1848, 1949.

29. Goland, M., "The Flutter of a Uniform Cantilever Wing",
Journal of Applied Mechanics, Vol. 12, No. 4, Dec.
1945, pp. 197-208.

30. Woolston, D. S. and Runyan, H. L., "Appraisal of Method
of Flutter Analysis Based on Chosen Modes of Compari-
son with Experiment for Cases of Large Mass Coupling",
NACA TN 1902, 1949.

31. Woolston, D. S. and Runyan, H. L., "On the Use of
Coupled Modal Functions in Flutter Analysis", NACA
TN 2375, 1951.

32. Fung, Y. C., An Introduction to the Theory of Aero-
elasticity, Dover, New York, 1969.

33. Scanlan, R. H. and Rosenbaum, R., Introduction to the
Study of Aircraft Vibration and Flutter, Dover,
New York, 1968.

-91-



34. Wang, P. K., "Control of Distributed Parameter Systems",
Advances in Control Systems, Vol. 1, Chap. 3, pp.

75-172, Academic Press, N. Y., 1964.

35. Rynaski, E., Whitbeck, R., and Dolbin, B., Jr.,
"Sensitivity Considerations in the Optimal Control

of a Flexible Launch Vehicle", CAL Report No.

BE-2311-Fl, Cornell Aeronautical Laboratory, Inc.,
Buffalo, N. Y., June 1967.

36. Triplett, W. E., "A Feasibility Study of Active Wing/

Store Flutter Control", JACC Paper No. 7B4, August

1971.

-92-


